Aktuelles und Termine:
28. November 2023 Max-Born-Preis 2024: Physikerin Ingrid Mertig für Verdienste um Spintronik geehrt

Für ihre Forschung zur Spintronik erhält die Physikerin Prof. Dr. Ingrid Mertig von der Martin-Luther-Universität Halle-Wittenberg (MLU) den Max-Born-Preis 2024. Die Auszeichnung wird von der Deutschen Physikalischen Gesellschaft und dem britischen Institute of Physics gemeinsam für herausragende Beiträge zur Physik vergeben. Den Preis nimmt die Wissenschaftlerin im Herbst 2024 auf einer Tagung in London entgegen.

Ingrid Mertig ist Autorin und Co-Autorin von mehr als 300 Publikationen in international renommierten Fachjournalen, darunter in "Nature", "Science Advances" und "Physical Review Letters". Sie forscht auf dem Gebiet der Spintronik. Mit Hilfe des Spins - eine Art Eigendrehimpuls von Elektronen - soll die Grundlage für neuartige Speicher- und Informationstechnologien entwickelt werden. Neben den Strömen elektrischer Ladungen sollen Spinströme durch ein Material fließen, was die Bauelemente deutlich effizienter machen würde.

Mertig studierte von 1974 bis 1979 Physik an der TU Dresden. 1982 folgte die Promotion, 1995 die Habilitation auf dem Gebiet der theoretischen Festkörperphysik - ebenfalls in Dresden. Nach einer Stelle als Heisenberg-Stipendiatin wurde Mertig 2001 auf die Professur für "Quantentheorie der Festkörper" an die MLU berufen. Von 2007 bis 2018 war sie Fellow der Max-Planck-Gesellschaft. Die Physikerin engagiert sich zudem seit vielen Jahren hochschulpolitisch, etwa im Wissenschaftsrat und verschiedenen Gremien der Deutschen Forschungsgemeinschaft.

International ist Mertig bestens vernetzt: Auf ihre Initiative war der Physik-Nobelpreisträger Prof. Dr. Albert Fert als Alexander von Humboldt-Preisträger für mehrere Forschungsaufenthalte an der MLU zu Gast. Zudem trug sie wesentlich dazu bei, den Spitzenforscher Prof. Dr. Stuart Parkin im Rahmen einer mit fünf Millionen Euro dotierten Alexander von Humboldt-Professur an die MLU und das Max-Planck-Institut für Mikrostrukturphysik nach Halle zu holen.

Der Max-Born-Preis wird für besonders wertvolle und aktuelle wissenschaftliche Beiträge zur Physik gemeinsam vom britischen Institute of Physics (IOP) und der DPG in Erinnerung an das Wirken des Mathematikers und Physikers Max Born (1882-1970) verliehen, der Deutschland wegen seiner jüdischen Herkunft 1933 verlassen musste und vor seiner Rückkehr in den 1950er Jahren erfolgreich in Großbritannien wirkte. Für grundlegende Beiträge zur Quantenmechanik wurde er 1954 mit dem Nobelpreis für Physik ausgezeichnet.

» Pressemitteilung der Martin-Luther-Universität
» Weitere Informationen zum Max-Born-Preis

18. Oktober 2023 Studie: Neuartige Nanopartikel als Kontrastmittel?

Spezielle Nanopartikel könnten künftig dabei helfen, moderne bildgebende Verfahren zu verbessern. Entwickelt wurden sie von Forschenden der Martin-Luther-Universität Halle-Wittenberg (MLU). Das Besondere: Die Nanopartikel reagieren auf Wärme und verändern dabei ihre Eigenschaften. In Kombination mit einem integrierten Farbstoff könnten die Teilchen in der photoakustischen Bildgebung eingesetzt werden, um hochauflösende, dreidimensionale Bilder des Körperinneren zu erzeugen. Die Studie wurde im Fachjournal "Chemical Communications" veröffentlicht.

Die Forschenden entwickelten sogenannte Single-Chain Nanoparticles (SCNPs), die aus einer einzigen Molekülkette bestehen und nur drei bis fünf Nanometer groß sind. In diese winzigen Kapseln lassen sich Farbstoffe einbinden. "Unsere SCNPs haben einzigartige thermoresponsive Eigenschaften. Sie verändern ihre Struktur bei Wärme: Je nach Temperatur können die Partikel eine kompakte oder offene Struktur annehmen und dabei verändert sich auch das Verhalten der eingekapselten Substanzen", erklärt der Chemiker Prof. Dr. Wolfgang Binder von der MLU, der die Studie gemeinsam mit dem Medizinphysiker Prof. Dr. Jan Laufer und dem Pharmazeuten Prof. Dr. Karsten Mäder leitete.

"Unsere Arbeit ist ein wichtiger Schritt in der Entwicklung thermoresponsiver SCNPs, die die Genauigkeit und Präzision der diagnostischen Bildgebung verbessern könnten", fasst Binder zusammen.

» Pressemitteilung der Martin-Luther-Universität
» Pressemitteilung (Englisch) der Martin-Luther-Universität
» Der Artikel in Chemical Communications

27. Juli 2023 Materialwissenschaft: Wie molekulare Schlaufen die Struktur von Polymeren bestimmen

Die Struktur von teilkristallinen Polymeren hängt maßgeblich davon ab, wie stark ihre Molekülketten ineinander verflochten sind. Das zeigt eine neue Studie von Forschenden der Martin-Luther-Universität Halle-Wittenberg (MLU) im Fachjournal "Proceedings of the National Academy of Sciences" (PNAS). Darin entwickeln sie auf der Basis zahlreicher Experimente ein neues Modell, um die mikroskopische Struktur der Materialien und auch ihre Eigenschaften vorherzusagen. Polymere sind langkettige Moleküle. Teilkristalline Polymere bestehen aus einer Mischung von festen und flüssigen Anteilen. Sie werden zum Beispiel häufig als Kunststoffe und Verpackungsmaterialien eingesetzt.

Wenn Materialien abkühlen, bilden sie auf der Ebene von Molekülen meist eine kristalline Struktur aus - alle Teilchen sind in einem fest geordneten Muster. "Bei der Entstehung von teilkristallinen Polymeren läuft der Prozess ähnlich ab, nur dass nicht alle Bereiche kristallisieren", sagt der Physiker Prof. Dr. Thomas Thurn-Albrecht von der MLU. Stattdessen gibt es auch sogenannte amorphe Bereiche, die nach dem Abkühlen keine geordnete Struktur haben. Hier finden sich Schlaufen, die miteinander verflochten sind. In teilkristallinen Polymeren wechseln sich geordnete und ungeordnete Schichten auf der Ebene weniger Nanometer immer wieder ab. Durch diese spezielle Struktur erhalten sie auch ihre besonderen Eigenschaften: Sie sind flexibel und elastisch, aber dennoch relativ robust. Das macht sie vor allem als Verpackungs- und Strukturmaterialien interessant.

Die Eigenschaften von teilkristallinen Polymeren hängen maßgeblich von zwei Faktoren ab: von der Dicke der jeweiligen Schichten und davon, wie stark die Ketten in den amorphen Bereichen miteinander verflochten sind. Während man laut Thurn-Albrecht schon relativ viel darüber weiß, welche Faktoren die Kristalldicke beeinflussen, ist das Wissen über die amorphen Schichten noch relativ begrenzt. Sein Team untersuchte gemeinsam mit der Gruppe von Prof. Dr. Kay Saalwächter von der MLU den Prozess der Kristallbildung speziell für diese Schichten. Anhand ihrer Messungen an einem Modellpolymer fanden die Physiker heraus, dass die Dicke der amorphen Schichten maßgeblich durch ihre Verschlaufungen bestimmt wird. Die Forschenden entwickelten zudem ein einfaches Modell, um diesen Zusammenhang zu beschreiben.

"Wir gehen davon aus, dass unser Modell auf viele verschiedene Polymere übertragbar ist, also auch auf solche, die aktuell weniger im Gebrauch sind", so Thurn-Albrecht. Die neuen Erkenntnisse könnten dabei helfen, bestehende Werkstoffe zu verbessern oder diese ganz oder zumindest teilweise durch nachhaltigere Alternativen zu ersetzen.

» Pressemitteilung der Martin-Luther-Universität
» Pressemitteilung (Englisch) der Martin-Luther-Universität
» Der Artikel in PNAS

10. Mai 2023 Überraschender Fund: Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken

Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden. Er besteht aus einem zwölfeckigen Wabenmuster, das so noch nie beschrieben wurde. Bislang kannte man ähnliche Quasikristalle nur in fester, jedoch nicht in flüssiger Form. Seine Ergebnisse beschreibt das Team in der Fachzeitschrift "Nature Chemistry".

Quasikristalle sind Materialien mit einer besonderen Struktur: Sie haben zwar ähnlich wie normale Kristalle ein regelmäßiges Muster. Bei Letzteren wiederholen sich die einzelnen Bauteile der Anordnung in gleichen Abständen immer wieder. Bei Quasikristallen dagegen passen die Bauteile nicht in einem solchen periodischen Muster zusammen. Durch diese besondere Struktur erhalten Quasikristalle besondere Eigenschaften, die normale Kristalle nicht haben.

Der neu entdeckte Quasikristall besteht aus mehreren Zwölfecken, die wiederum aus einer Mischung von dreieckigen, quadratischen und erstmals auch aus trapezförmigen Zellen aufgebaut sind. Diese wiederum entstehen aus der Selbstanordnung von "T-förmigen" Molekülen. "Bei unserem Fund handelt es sich um einen perfekt geordneten flüssigen Quasikristall. So ein Material war bisher noch nicht bekannt", sagt Chemiker Prof. Dr. Carsten Tschierske von der MLU. Mit seiner neuen Studie liefert das Team auch neue Erkenntnisse über die Entstehung dieser besonderen Strukturen: "Bisher wurde angenommen, dass die Stabilität von Quasikristallen auf einem Entropiegewinn beruht, der infolge des Bruchs strenger periodischer Parkettierungsregeln entsteht. Unsere Ergebnisse deuten jedoch darauf hin, dass die Stabilität von Quasikristallen in diesem Fall auf einer Energieminimierung in der perfekten quasikristallinen Ordnung beruhen kann", so Tschierske weiter.

Die potenziellen Anwendungen dieser neuen flüssigen Quasikristalle sind dem Forscher zufolge vielversprechend: Sie könnten in der Zukunft für die Herstellung von funktionalen selbstorganisierenden und selbstheilenden Materialien verwendet werden. Insbesondere in der Optik und Elektronik könnten flüssige Quasikristalle Anwendung finden, da sie das Potenzial haben, neue Wege der Licht- und Ladungsträgermanipulation zu eröffnen.

» Pressemitteilung der Martin-Luther-Universität
» Pressemitteilung (Englisch) der Martin-Luther-Universität
» Der Artikel in Nature Chemistry

2. Februar 2023 Physiker der MLU arbeiten an einer neuen Generation von Lithium-Ionen-Batterien

Zweieinhalb Jahre ist es her, dass Udo Reichmann und Marcel Neubert – zwei junge Physiker aus Dresden – an die Tür von PD Dr. Hartmut Leipner klopften. Sie schlugen vor, die übliche Graphit-Anode von Lithium-Batterien durch Silizium zu ersetzen und den Akku so mindestens zehnmal leistungsfähiger zu machen. „Ich dachte, das wird eine kurze und enttäuschende Unterhaltung, denn diese Idee ist nicht neu und bislang gescheitert“, sagt Leipner rückblickend. „Ein Irrtum, denn inzwischen hat sich daraus ein vielversprechendes Projekt entwickelt.“

Hartmut Leipner ist Geschäftsführer des Interdisziplinären Zentrums für Materialwissenschaften (IZM) der MLU. Hier wird intensiv an Halbleitertechnologien, Solarmodulen und Batterien geforscht. Das Zentrum verfügt über einen Reinraum mit mehreren Ultrahochvakuumanlagen zur Herstellung von Dünnschichtmaterialien, außerdem über leistungsstarke Rasterelektronenmikroskope und andere hochauflösende Analysetechniken. „Unsere Expertise und technische Ausstattung waren die Gründe dafür, dass die Dresdner sich an mich gewandt haben.“

Von der – theoretisch – einhundertfach höheren Ladekapazität der Silizium-Anode im Vergleich zu Graphit wird in der Praxis nur ein Zehntel erreicht werden, schätzen die Forscher. Dennoch: „Stellen Sie sich vor, wir würden bei gleicher Akku-Größe eines Autos nicht über eine Reichweite von 300, sondern von 3.000 Kilometern sprechen“, sagt Hartmut Leipner. „Das würde der Akzeptanz und dem Ausbau der Elektromobilität völlig neue Impulse geben.“ Zugleich wäre es mit der neuen Generation von Lithium-Batterien möglich, deutlich leichtere Geräte zu bauen – nicht nur Tablets und Laptops, sondern zum Beispiel auch Drohnen, bei denen jedes Gramm Gewichtsersparnis zählt.

» Kompletter Bericht im Online-Magazin der Martin-Luther-Universität

26. Januar 2023 MLU-Physiker lösen Rätsel um Bildung zweidimensionaler Quasikristalle aus Metalloxiden

Die Struktur von zweidimensionalem Titanoxid lässt sich bei starker Hitze und unter Zugabe von Barium gezielt aufbrechen: Statt regelmäßiger Sechsecke entstehen Ringe aus vier, sieben und zehn Atomen, die sich aperiodisch verteilen. Mit dieser Entdeckung hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU) gemeinsam mit Forschenden des Max-Planck-Instituts (MPI) für Mikrostrukturphysik, der Université Grenoble Alpes und des National Institute of Standards and Technology (Gaithersburg, USA) ein zentrales Rätsel um die Bildung zweidimensionaler Quasikristalle aus Metalloxiden gelöst. Ihre Erkenntnisse haben sie im renommierten Journal "Nature Communications" veröffentlicht.

Sechsecke sind in der Natur häufig anzutreffen. Das bekannteste Beispiel sind Honigwaben, aber auch Graphen oder verschiedene Metalloxide, etwa Titanoxid, bilden diese Strukturen. "Sechsecke sind ein ideales Muster für eine periodische Verteilung", sagt Dr. Stefan Förster aus der Fachgruppe Oberflächen- und Grenzflächenphysik des Instituts für Physik der MLU. "Sie passen so perfekt ineinander, dass keine Zwischenräume entstehen." 2013 machte die Fachgruppe eine erstaunliche Entdeckung, nachdem sie eine hauchdünne Lage Titanoxid auf eine Platinunterlage aufgebracht, im Ultrahochvakuum auf etwa 1.000 Grad Celsius erhitzt und mit Barium versetzt hatte: Die Atome ordneten sich zu einer Struktur aus Dreiecken, Quadraten und Rauten, die gemeinsam eine symmetrische Figur mit zwölf Kanten bilden - die Forscher sprechen von einer zwölfzähligen Rotationssymmetrie, im Gegensatz zur sechszähligen wie im Ausgangszustand. Förster: "Es entstehen Quasikristalle, die sich durch eine aperiodische Struktur auszeichnen. Diese Struktur basiert auf grundlegenden Atomclustern und ist hoch geordnet, auch wenn die Systematik für den Betrachter nur schwer ersichtlich ist." Die halleschen Physiker waren die weltweit ersten, die die Bildung zweidimensionaler Quasikristalle in Metalloxiden nachweisen konnten.

Welche Mechanismen der Bildung solcher Quasikristalle zugrunde liegen, war bislang nicht geklärt. Gemeinsam mit Forschenden des Max-Planck-Instituts für Mikrostrukturphysik Halle, der Université Grenoble Alpes und des National Institute of Standards and Technology (Gaithersburg, USA) haben die MLU-Physiker dieses Rätsel nun gelöst. Mit aufwändigen Experimenten, energetischen Berechnungen und hochauflösender Mikroskopie haben sie gezeigt, dass hohe Temperaturen und die Gegenwart von Barium ein Netzwerk aus Titan- und Sauerstoff-Ringen mit jeweils vier, sieben und zehn Atomen erzeugen. "Das Barium sprengt die Atomringe auf und stabilisiert sie zugleich", erklärt Förster, der das Gemeinschaftsprojekt leitet.

Mit ihrer neuesten Entdeckung klären die Forschenden nicht nur eine grundlegende Frage der Physik. "Nachdem wir die Bildungsmechanismen auf atomarer Ebene besser verstehen, können wir versuchen, solche zweidimensionalen Quasikristalle auch in anderen anwendungsrelevanten Materialien zu erzeugen, seien es Metalloxide oder etwa Graphen", sagt Förster. "Wir sind gespannt, ob diese besondere Ordnung völlig neue und nutzbare Eigenschaften hervorbringt."

» Pressemitteilung der Martin-Luther-Universität
» Pressemitteilung (Englisch) der Martin-Luther-Universität
» Der Artikel in Nature Communications

» Nachrichten-Archiv

(letzte Änderung: 21.12.2023, 15:10 Uhr)